Fibonacci numbers

The Fibonacci sequence is named after Italian mathematician Leonardo of Pisa, known as Fibonacci:
https://en.wikipedia.org/wiki/Fibonacci_number
The Fibonacci numbers fn = f(n) are the numbers characterized by the fact that every number after the first two is the sum of the two preceding ones. They are defined with the next recurrent relation:
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So f0 = 0, f1 = 1, fn = fn-1 + fn-2. 

The Fibonacci sequence has the form

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …

Example. Fill integer array fib with Fibonacci numbers (fib[i] = fi):
#include <stdio.h>

int i, n, fib[47];

int main(void)

{

  scanf("%d",&n);

  fib[0] = 0; fib[1] = 1;

  for(i = 2; i <= n; i++)

    fib[i] = fib[i-1] + fib[i-2];

  printf("%d\n",fib[n]);

  return 0;

}
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The biggest Fibonacci number that fits into int type is 
f46 = 1836311903
The biggest Fibonacci number that fits into long long type is 
f92 = 7540113804746346429
If you want to find Fibonacci number fn for n > 92, use BigInteger type.
Example. Find f(n) – the n-th Fibonacci number with recursion:

#include <stdio.h>

int n;

int fib(int n)

{

  if (n == 0) return 0;

  if (n == 1) return 1;

  return fib(n-1) + fib(n - 2);

}

int main(void)

{

  scanf("%d",&n);

  printf("%d\n",fib(n));

  return 0;

}
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Example. Find f(n) – the n-th Fibonacci number with recursion + memorization:

#include <stdio.h>

#include <string.h>

int n, fib[46];

int f(int n)

{
  // base case
  if (n == 0) return 0;

  if (n == 1) return 1;
  // if the value fib[n] is ALREADY found, just return it
  if (fib[n] != -1) return fib[n]; 
  // if the value fib[n] is not found, calculate and memorize it
  return fib[n] = f(n-1) + f(n - 2);

}

int main(void)

{

  scanf("%d",&n);
  // fib[i] = -1 means that this value is not calculated yet
  memset(fib,-1,sizeof(fib));
  printf("%d\n",f(n));

  return 0;

}
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Java code
import java.util.*;
public class Main
{
  static int fib[] = new int[46];    
  static int f(int n)
  {
    if (n == 0) return 0;
    if (n == 1) return 1;
    if (fib[n] != -1) return fib[n];
    return fib[n] = f(n-1) + f(n - 2);
  }
  public static void main(String[] args)
  {
    Scanner con = new Scanner(System.in);
    int n = con.nextInt();
    Arrays.fill(fib, -1);
    System.out.println(f(n));     
    con.close();
  }
}
Prove the next properties for Fibonacci numbers:

а) f0 + f1 + f2 + f3 + … +  fn = fn+2 – 1;
► Base case n = 0: f0 = f2 – 1, which is true because 0 = 1 – 1.

Induction step: f0 + f1 + f2 + f3 + … +  fn =  (f0 + f1 + f2 + f3 + … +  fn-1) + fn =

fn+1 – 1 + fn = fn+2 – 1

b) f1 + f3 + f5 + … +  f2n-1 = f2n;
► Base case n = 1: f1 = f2, which is true because 1 = 1.

Induction step: f1 + f3 + … +  f2n+1 =  (f1 + f3 + … +  f2n-1) + f2n+1 =

f2n + f2n+1 = f2n+2
c) f2 + f4 + f6 + … +  f2n = f2n+1 – 1;

► Base case n = 1: f2 = f3 – 1, which is true because 1 = 2 – 1.

Induction step: f2 + f4 + … +  f2n+2 =  (f2 + f4 + … +  f2n) + f2n+2 =

f2n+1 – 1 + f2n+2 = f2n+3 – 1

d) f02 + f12 + f22 + … +  fn2 = fn * fn+1;

► Base case n = 0: f02 = f0 * f1, which is true because 0 = 0 * 1.

Induction step: f02 + f12 + f22 + … +  fn2 =  (f02 + f12 + f22 + … +  fn-12) + fn2 =

fn-1 * fn + fn2 = fn * (fn-1 + fn) = fn * fn+1
E-OLYMP 4730. Fibonacci Fibonacci numbers is a sequence of numbers F(n), given by the formula:

F(0) = 1, F(1) = 1, F(n) = F(n – 1) + F(n – 2)

Given value of n (n ≤ 45). Find the n-th Fibonacci number.

► Implement a recursive function with memorization. 
NO two one’s in a row

Find the number of sequences of length n, consisting only of zeros and ones, that do not have two one’s in a row.

Let f(n) be the number of sequences consisting of 0 and 1 of length n that do not have two one’s in a row. 
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If the first number in the sequence is 0, then starting from the second place we can build f(n – 1) sequences. If the first number in the sequence is 1, then second number should be 0.
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We have Fibonacci numbers with base cases f(1) = 2, f(2) = 3.
E-OLYMP 263. Three ones Find the number of sequences of length n, consisting only of zeros and ones, that do not have three one’s in a row.

► Let f(n) be the number of required sequences consisting of 0 and 1 of length n. If the first number in the sequence is 0, then starting from the second place we can build f(n – 1) sequences. If the first number in the sequence is 1, then second number can be any (0 or 1). If second number is 0, on the next n – 2 free places we can construct f(n – 2) sequences. If second number is 1, the third number must be exactly 0, and starting from the forth place we can construct f(n – 3) sequences.
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We have the recurrence: f(n) = f(n – 1) + f(n – 2) + f(n – 3). Now we must calculate the initial values:

f(1) = 2, since there are two sequence of lengths 1: 0 and 1.

f(2) = 4, since there are four sequence of lengths 2: 00, 01, 10 and 11.

f(3) = 7, since there are seven sequence of lengths 3: 000, 001, 010, 011, 100, 101 and 110.
Do not forget to run all operations modulo 12345.
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E-OLYMP 4469. Domino Find the number of ways to cover a rectangle 2 × n with domino of size 2 × 1. The coverings that turn themselves into symmetries are considered different. 

► Let f(n) be the number of ways to cover the 2 × n rectangle with 2 × 1 dominoes. Obviously, that
· f(1) = 1, one vertical domino;
· f(2) = 2, two vertical or two horizontal dominoes.
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Consider an algorithm for computing f(n). You can put one domino vertically and then cover a rectangle of length n – 1 in f(n – 1) ways, or put two dominoes horizontally and then cover a rectangle of length n – 2 in f(n – 2) ways. That is, f(n) = f(n – 1) + f(n – 2). 
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So f(n) is the Fibonacci number.
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Since n < 65536, long arithmetic or Java programming language should be used.
E-OLYMP 8295. Fibonacci string generation Generate the n-th Fibonacci string that is defined with the next recurrent formula:

· f(0) = "a";

· f(1) = "b";

· f(n) = f(n – 1) + f(n – 2), where "+" operation means concatenation
For example, f(3) = f(2) + f(1) = (f(1) + f(0)) + f(1) = "b" + "a" + "b" = "bab".

► Implement a recursive function that generates the n-th Fibonacci string.
string f(int n)

{

  if (n == 0) return "a";

  if (n == 1) return "b";

  return f(n-1) + f(n-2);

}

Read input value of n and print the n-th Fibonacci string.

cin >> n;

cout << f(n) << endl;

E-OLYMP 5091. Explosive containers You have two types of boxes: with trotyl (TNT) or without. You must build with boxes a tower of height n. In how many ways can you do it if it is forbidden to put TNT box on TNT box because of explosion.
► Let's code the empty box with 0 and the box with TNT with 1. In the problem we must find the number of strings of length n consisting of 0 and 1, in which two ones are not adjacent. The answer to the problem will be the Fibonacci number f(n):
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Consider all possible towers of height n = 1, n = 2, n = 3. Each of them corresponds a sequence of 0 and 1. There are:
· two towers of height 1;

· three towers of height 2;

· five towers of height 3;
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E-OLYMP 5103. Koza Nostra n teachers sit in a circle. The dealer should give to some of them one card with Ace (any amount of Aces is possible, even can be 0) – these teachers are the mafia. However, no two mafiosi can sit next to each other. In how many ways can deal the cards the dealer?
► Let g(n) be the number of ways to deal the cards to n teachers arranged in a row (the first teachers is not located next to the last). Then the problem is equivalent to finding the number of sequences of length n consisting of 0 and 1, where no two ones stand side by side. Solution to this problem is the Fibonacci number given by recurrence:
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Let f(n) be the number of ways to deal cards to n teachers arranged in a circle.

[image: image15.emf]f(n)=0g(n -1)+1g(n -3)00


If the first teacher was not given an ace, then the next n – 1 teachers can be given aces in g(n – 1) ways. If the first teacher was given an ace, then the second and last teachers should not be given aces. For the remaining n – 3 teachers the aces can be distributed in g(n – 3) ways. We have the relation:
f(n) = g(n – 1) + g(n – 3), if n ≥ 3
For n = 3 we need the value g(0), that can be calculated from the equality g(0) + g(1) = g(2), whence g(0) = g(2) – g(1) = 3 – 2 = 1. Hence f(3) = g(2) + g(0) = 3 + 1 = 4.
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Here is the base cases:

· f(1) = 2

· f(2) = 3
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E-OLYMP 5092. Honeycomb The bee can go in honeycomb as shown in the figure – with moves 1 and 2 from upper row and with move 3 from the lower.

[image: image18.png]
Find the number of ways to get from the first cell of the top row to the last cell of the same row.
► Enumerate the honeycomb in the next way:
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Let f(k) be the number of ways to get from the first honeycomb into the k-th one. If upper row contains n honeycomb, the number of rightmost honeycomb of upper row has number 2n – 1. So the answer to the problem will be f(2n – 1).
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If k-th honeycomb is located in the upper row, the bee can come into it either from (k – 2)-th honeycomb, or from (k – 3)-th. So f(k) = f(k – 2) + f(k – 3) for odd k.

If k-th honeycomb is located in the lower row, the bee can come into it only from (k – 1)-th honeycomb. So f(k) = f(k – 1) for even k.

Calculate the base cases separately: f(1) = 1, f(2) = 1, f(3) = 1.

E-OLYMP 1343. Bad substring Find the number of strings of length n (0 ≤ n ≤ 45) consisting of only the characters 'a', 'b' and 'c', not containing the substring "ab".

► Let f(n) be the number of required strings of length n. If n = 1 we have 3 such strings, when n = 2 we have 8 strings:
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Consider all possible ways to build the required strings. In the first position we can put one of three letters: ‘a’, ‘b’ or ‘c’. If we first put ‘b’ or ‘c’, then in the next n – 1 positions we can put any of f(n – 1) words. If we first put ‘a’, then we need to consider the cases of placing the letters in the second position. If we place in the second position ‘c’, then in the next n – 2 positions we can put any of f(n – 2) words. If we put in the second position ‘a’, then similary we need to consider the placement of letters in the third position.
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We have a relation:

f(n) = 2f(n – 1) + f(n – 2) + f(n – 3) + … + f(1) + f(0) + 1

How to simplify this recurrence? Let’s rewrite it from f(n – 1): 

f(n – 1) = 2f(n – 2) + f(n – 3) + f(n – 4) + … + f(1) + f(0) + 1,

whence

f(n – 2) + f(n – 3) + f(n – 4) + … + f(1) + f(0) + 1 = f(n – 1) –  f(n – 2)

Substitute this sum in the first relation:

f(n) = 2f(n – 1) + f(n – 1) –  f(n – 2) = 3f(n – 1) –  f(n – 2)

So we get the recurrence relation:
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E-OLYMP 5973. Out of the line! n soldiers stay in one line. In how many ways can we choose some of them (at least one) so that among them there will not be soldiers standing in a line beside?
► Let f(n) be the number of ways for soldiers to out of the line. Its obvious that f(1) = 1 and f(2) = 2.
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Let the soldiers in the row are numbered in decreasing order from n to 1. Then its possible to get out of the line with one of the next ways:

· n-th goes out, all others stay in a line;

· n-th goes out, then (n – 1)-st must stay in a line. Then recursively consider the solution for (n – 2) soldiers;

· n-th stay in a line. Then recursively solve the problem for (n – 1) soldiers;

So we get the recurrence relation:
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E-OLYMP 6583. Counting ones How many ones in binary representation of numbers from 0 to n?
► Let f(n) be the number of ones in binary representation of all integers from 0 to n. Then the answer for the interval [a; b] is the value f(b) – f(a – 1).
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If n is odd, then f(n) = 2 * f(n / 2) + 
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If n is even, let f(n) = f(n – 1) + s(n), where s(n) is the number of ones in binary representation of n.

The base case is f(0) = 0.
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