Fibonacci numbers

The Fibonacci sequence is named after Italian mathematician Leonardo of Pisa, known as Fibonacci:
https://en.wikipedia.org/wiki/Fibonacci_number
The Fibonacci numbers fn = f(n) are the numbers characterized by the fact that every number after the first two is the sum of the two preceding ones. They are defined with the next recurrent relation:

[image: image1.wmf]ï

î

ï

í

ì

-

+

-

=

=

=

)

2

(

)

1

(

1

,

1

0

,

0

)

(

n

f

n

f

n

if

n

if

n

f

So f0 = 0, f1 = 1, fn = fn-1 + fn-2.

The Fibonacci sequence has the form

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …

Example. Fill integer array fib with Fibonacci numbers (fib[i] = fi):
#include <stdio.h>

int i, n, fib[47];

int main(void)

{

 scanf("%d",&n);

 fib[0] = 0; fib[1] = 1;

 for(i = 2; i <= n; i++)

 fib[i] = fib[i-1] + fib[i-2];

 printf("%d\n",fib[n]);

 return 0;

}

[image: image2.emf]0

0

1

1

1

2

2

3

3

4

5

5

fib[i]

i

8

6

13

7

21

8

34

9

55

10

...

...

The biggest Fibonacci number that fits into int type is
f46 = 1836311903
The biggest Fibonacci number that fits into long long type is
f92 = 7540113804746346429
If you want to find Fibonacci number fn for n > 92, use BigInteger type.
Example. Find f(n) – the n-th Fibonacci number with recursion:

#include <stdio.h>

int n;

int fib(int n)

{

 if (n == 0) return 0;

 if (n == 1) return 1;

 return fib(n-1) + fib(n - 2);

}

int main(void)

{

 scanf("%d",&n);

 printf("%d\n",fib(n));

 return 0;

}

[image: image3.emf]f(4)

f(3) + f(2)

f(2) + f(1)f(1)+ f(0)

f(1)+ f(0)

f(2) + f(1)

f(1)+ f(0)

f(3)+

f(5)

Example. Find f(n) – the n-th Fibonacci number with recursion + memorization:

#include <stdio.h>

#include <string.h>

int n, fib[46];

int f(int n)

{
 // base case
 if (n == 0) return 0;

 if (n == 1) return 1;
 // if the value fib[n] is ALREADY found, just return it
 if (fib[n] != -1) return fib[n];
 // if the value fib[n] is not found, calculate and memorize it
 return fib[n] = f(n-1) + f(n - 2);

}

int main(void)

{

 scanf("%d",&n);
 // fib[i] = -1 means that this value is not calculated yet
 memset(fib,-1,sizeof(fib));
 printf("%d\n",f(n));

 return 0;

}

[image: image4.emf]f(4)

f(3) + f(2)

f(2) + f(1)

f(1)+ f(0)

f(3)+

f(5)

mem

mem

Java code
import java.util.*;
public class Main
{
 static int fib[] = new int[46];
 static int f(int n)
 {
 if (n == 0) return 0;
 if (n == 1) return 1;
 if (fib[n] != -1) return fib[n];
 return fib[n] = f(n-1) + f(n - 2);
 }
 public static void main(String[] args)
 {
 Scanner con = new Scanner(System.in);
 int n = con.nextInt();
 Arrays.fill(fib, -1);
 System.out.println(f(n));
 con.close();
 }
}
Prove the next properties for Fibonacci numbers:

а) f0 + f1 + f2 + f3 + … + fn = fn+2 – 1;
► Base case n = 0: f0 = f2 – 1, which is true because 0 = 1 – 1.

Induction step: f0 + f1 + f2 + f3 + … + fn = (f0 + f1 + f2 + f3 + … + fn-1) + fn =

fn+1 – 1 + fn = fn+2 – 1

b) f1 + f3 + f5 + … + f2n-1 = f2n;
► Base case n = 1: f1 = f2, which is true because 1 = 1.

Induction step: f1 + f3 + … + f2n+1 = (f1 + f3 + … + f2n-1) + f2n+1 =

f2n + f2n+1 = f2n+2
c) f2 + f4 + f6 + … + f2n = f2n+1 – 1;

► Base case n = 1: f2 = f3 – 1, which is true because 1 = 2 – 1.

Induction step: f2 + f4 + … + f2n+2 = (f2 + f4 + … + f2n) + f2n+2 =

f2n+1 – 1 + f2n+2 = f2n+3 – 1

d) f02 + f12 + f22 + … + fn2 = fn * fn+1;

► Base case n = 0: f02 = f0 * f1, which is true because 0 = 0 * 1.

Induction step: f02 + f12 + f22 + … + fn2 = (f02 + f12 + f22 + … + fn-12) + fn2 =

fn-1 * fn + fn2 = fn * (fn-1 + fn) = fn * fn+1
E-OLYMP 4730. Fibonacci Fibonacci numbers is a sequence of numbers F(n), given by the formula:

F(0) = 1, F(1) = 1, F(n) = F(n – 1) + F(n – 2)

Given value of n (n ≤ 45). Find the n-th Fibonacci number.

► Implement a recursive function with memorization.
NO two one’s in a row

Find the number of sequences of length n, consisting only of zeros and ones, that do not have two one’s in a row.

Let f(n) be the number of sequences consisting of 0 and 1 of length n that do not have two one’s in a row.

[image: image5.emf]f(1) = 2

0

1

0

0

1

0

1

0

f(2) = 3

0

1

1

1

0

0

f(3) = 5

0

0

0

0

0

0

1

0

1

If the first number in the sequence is 0, then starting from the second place we can build f(n – 1) sequences. If the first number in the sequence is 1, then second number should be 0.

[image: image6.emf]f(n)

n

=0

f(n-1)

n-1

+f(n-2)

n-2

10

We have Fibonacci numbers with base cases f(1) = 2, f(2) = 3.
E-OLYMP 263. Three ones Find the number of sequences of length n, consisting only of zeros and ones, that do not have three one’s in a row.

► Let f(n) be the number of required sequences consisting of 0 and 1 of length n. If the first number in the sequence is 0, then starting from the second place we can build f(n – 1) sequences. If the first number in the sequence is 1, then second number can be any (0 or 1). If second number is 0, on the next n – 2 free places we can construct f(n – 2) sequences. If second number is 1, the third number must be exactly 0, and starting from the forth place we can construct f(n – 3) sequences.

[image: image7.emf]f(n)

n

=0

f(n-1)

n-1

+f(n-2)

n-2

10

+f(n-3)

n-3

101

We have the recurrence: f(n) = f(n – 1) + f(n – 2) + f(n – 3). Now we must calculate the initial values:

f(1) = 2, since there are two sequence of lengths 1: 0 and 1.

f(2) = 4, since there are four sequence of lengths 2: 00, 01, 10 and 11.

f(3) = 7, since there are seven sequence of lengths 3: 000, 001, 010, 011, 100, 101 and 110.
Do not forget to run all operations modulo 12345.

[image: image8.emf]f(1) = 2

0

1

f(2) = 4

01

10

00

11

f(3) = 7

01

10

00

11

0

1

+

0

0

1

+

110

=

001

010

000

011

=

100

101

=110

E-OLYMP 4469. Domino Find the number of ways to cover a rectangle 2 × n with domino of size 2 × 1. The coverings that turn themselves into symmetries are considered different.

► Let f(n) be the number of ways to cover the 2 × n rectangle with 2 × 1 dominoes. Obviously, that
· f(1) = 1, one vertical domino;
· f(2) = 2, two vertical or two horizontal dominoes.

[image: image9.emf]f(1) = 1f(2) = 2f(3) = 3

Consider an algorithm for computing f(n). You can put one domino vertically and then cover a rectangle of length n – 1 in f(n – 1) ways, or put two dominoes horizontally and then cover a rectangle of length n – 2 in f(n – 2) ways. That is, f(n) = f(n – 1) + f(n – 2).

[image: image10.emf]f(n)

n

=

f(n-1)

n-1

+f(n-2)

n-2

So f(n) is the Fibonacci number.

[image: image11.emf]f(4)

=

Since n < 65536, long arithmetic or Java programming language should be used.
E-OLYMP 8295. Fibonacci string generation Generate the n-th Fibonacci string that is defined with the next recurrent formula:

· f(0) = "a";

· f(1) = "b";

· f(n) = f(n – 1) + f(n – 2), where "+" operation means concatenation
For example, f(3) = f(2) + f(1) = (f(1) + f(0)) + f(1) = "b" + "a" + "b" = "bab".

► Implement a recursive function that generates the n-th Fibonacci string.
string f(int n)

{

 if (n == 0) return "a";

 if (n == 1) return "b";

 return f(n-1) + f(n-2);

}

Read input value of n and print the n-th Fibonacci string.

cin >> n;

cout << f(n) << endl;

E-OLYMP 5091. Explosive containers You have two types of boxes: with trotyl (TNT) or without. You must build with boxes a tower of height n. In how many ways can you do it if it is forbidden to put TNT box on TNT box because of explosion.
► Let's code the empty box with 0 and the box with TNT with 1. In the problem we must find the number of strings of length n consisting of 0 and 1, in which two ones are not adjacent. The answer to the problem will be the Fibonacci number f(n):

[image: image12.wmf]ï

î

ï

í

ì

-

+

-

=

=

=

)

2

(

)

1

(

2

,

3

1

,

2

)

(

n

f

n

f

n

if

n

if

n

f

Consider all possible towers of height n = 1, n = 2, n = 3. Each of them corresponds a sequence of 0 and 1. There are:
· two towers of height 1;

· three towers of height 2;

· five towers of height 3;

[image: image13.emf]TNT

01

TNT

000110

TNT

TNT

000001010

TNT

100

TNT

101

TNTTNT

E-OLYMP 5103. Koza Nostra n teachers sit in a circle. The dealer should give to some of them one card with Ace (any amount of Aces is possible, even can be 0) – these teachers are the mafia. However, no two mafiosi can sit next to each other. In how many ways can deal the cards the dealer?
► Let g(n) be the number of ways to deal the cards to n teachers arranged in a row (the first teachers is not located next to the last). Then the problem is equivalent to finding the number of sequences of length n consisting of 0 and 1, where no two ones stand side by side. Solution to this problem is the Fibonacci number given by recurrence:

[image: image14.wmf]ï

î

ï

í

ì

-

+

-

=

=

=

)

2

(

)

1

(

2

,

3

1

,

2

)

(

n

g

n

g

n

if

n

if

n

g

Let f(n) be the number of ways to deal cards to n teachers arranged in a circle.

[image: image15.emf]f(n)=0g(n -1)+1g(n -3)00

If the first teacher was not given an ace, then the next n – 1 teachers can be given aces in g(n – 1) ways. If the first teacher was given an ace, then the second and last teachers should not be given aces. For the remaining n – 3 teachers the aces can be distributed in g(n – 3) ways. We have the relation:
f(n) = g(n – 1) + g(n – 3), if n ≥ 3
For n = 3 we need the value g(0), that can be calculated from the equality g(0) + g(1) = g(2), whence g(0) = g(2) – g(1) = 3 – 2 = 1. Hence f(3) = g(2) + g(0) = 3 + 1 = 4.

[image: image16.emf]000001010

100

Here is the base cases:

· f(1) = 2

· f(2) = 3

[image: image17.emf]0

1

f(1) = 2

0

1

f(2) = 3

1

0

00

E-OLYMP 5092. Honeycomb The bee can go in honeycomb as shown in the figure – with moves 1 and 2 from upper row and with move 3 from the lower.

[image: image18.png]
Find the number of ways to get from the first cell of the top row to the last cell of the same row.
► Enumerate the honeycomb in the next way:

[image: image19.emf]1

246

357

...

...

2n-2

2n-1

Let f(k) be the number of ways to get from the first honeycomb into the k-th one. If upper row contains n honeycomb, the number of rightmost honeycomb of upper row has number 2n – 1. So the answer to the problem will be f(2n – 1).

[image: image20.emf]kk -21

k -3

k + 1k -11

k

If k-th honeycomb is located in the upper row, the bee can come into it either from (k – 2)-th honeycomb, or from (k – 3)-th. So f(k) = f(k – 2) + f(k – 3) for odd k.

If k-th honeycomb is located in the lower row, the bee can come into it only from (k – 1)-th honeycomb. So f(k) = f(k – 1) for even k.

Calculate the base cases separately: f(1) = 1, f(2) = 1, f(3) = 1.

E-OLYMP 1343. Bad substring Find the number of strings of length n (0 ≤ n ≤ 45) consisting of only the characters 'a', 'b' and 'c', not containing the substring "ab".

► Let f(n) be the number of required strings of length n. If n = 1 we have 3 such strings, when n = 2 we have 8 strings:

[image: image21.emf]abc

n = 1

aabaca

n = 2

acbb

bc

cb

cc

Consider all possible ways to build the required strings. In the first position we can put one of three letters: ‘a’, ‘b’ or ‘c’. If we first put ‘b’ or ‘c’, then in the next n – 1 positions we can put any of f(n – 1) words. If we first put ‘a’, then we need to consider the cases of placing the letters in the second position. If we place in the second position ‘c’, then in the next n – 2 positions we can put any of f(n – 2) words. If we put in the second position ‘a’, then similary we need to consider the placement of letters in the third position.

[image: image22.emf]n

f(n)=

[image: image23.emf]n

+

f(n-1)

b

f(n-1)

c

 EMBED Visio.Drawing.11 [image: image24.emf]n

+f(n-2)

ac

[image: image25.emf]n

+f(n-3)

aca

[image: image26.emf]n

+ . . .f(n-4)

acaa

[image: image27.emf]n

+

f(1)aa...ca

[image: image28.emf]n

+

...aaaca

[image: image29.emf]n

...aaaaa

We have a relation:

f(n) = 2f(n – 1) + f(n – 2) + f(n – 3) + … + f(1) + f(0) + 1

How to simplify this recurrence? Let’s rewrite it from f(n – 1):

f(n – 1) = 2f(n – 2) + f(n – 3) + f(n – 4) + … + f(1) + f(0) + 1,

whence

f(n – 2) + f(n – 3) + f(n – 4) + … + f(1) + f(0) + 1 = f(n – 1) – f(n – 2)

Substitute this sum in the first relation:

f(n) = 2f(n – 1) + f(n – 1) – f(n – 2) = 3f(n – 1) – f(n – 2)

So we get the recurrence relation:

[image: image30.wmf]î

í

ì

=

=

-

-

-

=

3

)

1

(

,

1

)

0

(

)

2

(

)

1

(

3

)

(

f

f

n

f

n

f

n

f

E-OLYMP 5973. Out of the line! n soldiers stay in one line. In how many ways can we choose some of them (at least one) so that among them there will not be soldiers standing in a line beside?
► Let f(n) be the number of ways for soldiers to out of the line. Its obvious that f(1) = 1 and f(2) = 2.

[image: image31.emf]+

n

n-1n-2...1

=

nn-1n-2...1

[image: image32.emf]+

n

f(n-2)f(n-1)nn-1

Let the soldiers in the row are numbered in decreasing order from n to 1. Then its possible to get out of the line with one of the next ways:

· n-th goes out, all others stay in a line;

· n-th goes out, then (n – 1)-st must stay in a line. Then recursively consider the solution for (n – 2) soldiers;

· n-th stay in a line. Then recursively solve the problem for (n – 1) soldiers;

So we get the recurrence relation:

[image: image33.wmf]î

í

ì

=

=

+

-

+

-

=

2

)

2

(

,

1

)

1

(

1

)

2

(

)

1

(

)

(

f

f

n

f

n

f

n

f

E-OLYMP 6583. Counting ones How many ones in binary representation of numbers from 0 to n?
► Let f(n) be the number of ones in binary representation of all integers from 0 to n. Then the answer for the interval [a; b] is the value f(b) – f(a – 1).

[image: image34.emf]000

001

010

011

101

100

f(5) = 7

000

001

010

011

100

101

=

00

01

10

f(2)

+

00

01

10

+f(2)

+

0

1

0

1

0

1

+(5+1)/2f(5)=

2+2+3=

If n is odd, then f(n) = 2 * f(n / 2) +
[image: image35.wmf]é

ù

2

/

n

.

If n is even, let f(n) = f(n – 1) + s(n), where s(n) is the number of ones in binary representation of n.

The base case is f(0) = 0.

_1579695339.vsd
k

k - 2

1

k - 3

k + 1

k - 1

1

k

_1660653851.vsd
f(n)

n

=

0

f(n-1)

n-1

+

f(n-2)

n-2

1

0

_1660740312.unknown

_1660762925.vsd
f(n)

=

0

g(n - 1)

+

1

g(n - 3)

0

0

_1660764024.vsd
0

1

0

0

0

1

0

1

0

0

0

0

_1661358527.unknown

_1660763692.vsd
0

1

f(1) = 2

0

1

f(2) = 3

1

0

0

0

_1660740641.vsd
TNT

0

1

TNT

00

01

10

TNT

TNT

000

001

010

TNT

100

TNT

101

TNT

TNT

_1660659243.vsd
0

1

1

f(1) = 2

1

0

0

f(3) = 5

0

0

0

1

0

0

0

0

1

0

0

1

0

1

0

f(2) = 3

0

1

_1660661793.vsd
000

001

010

011

101

100

f(5) = 7

00

00

1

01

0

01

0

1

10

0

10

1

=

00

01

10

f(2)

+

00

01

10

+

f(2)

+

0

1

0

1

0

1

+

(5+1)/2

f(5)

=

2

+

2

+

3

=

_1660649838.vsd
f(1) = 1

f(3) = 3

f(2) = 2

_1660652983.vsd
f(n)

n

=

0

f(n-1)

n-1

+

f(n-2)

n-2

1

0

+

f(n-3)

n-3

1

0

1

_1660650421.vsd
f(4)

=

_1600965021.vsd
f(n)

n

=

f(n-1)

n-1

+

f(n-2)

n-2

_1579696649.vsd
n

+

f(1)

a

a

...

c

a

_1578743765.vsd
f(4)

f(3) + f(2)

f(2) + f(1)

mem

mem

f(1) + f(0)

f(3)

+

f(5)

_1579513656.vsd
a

b

c

n = 1

aa

ba

ca

n = 2

ac

bb

bc

cb

cc

_1579514545.vsd
n

+

f(n-3)

a

c

a

_1579517384.vsd
n

+

...

a

a

a

c

a

_1579514216.vsd
n

+ . . .

f(n-4)

a

c

a

a

_1578744329.vsd
1

2

4

6

3

5

7

...

...

2n-2

2n-1

_1578918058.unknown

_1546252059.vsd
f(1) = 2

0

1

f(2) = 4

01

10

00

11

f(3) = 7

01

10

00

11

0

1

+

0

0

1

+

1

1

0

=

001

010

000

011

=

100

101

=

110

_1578329519.vsd
0

0

1

1

1

2

2

3

3

4

5

5

fib[i]

i

8

6

13

7

21

8

34

9

55

10

...

...

_1578330055.vsd
f(4)

f(3) + f(2)

f(2) + f(1)

f(1) + f(0)

f(1) + f(0)

f(3)

f(2) + f(1)

f(1) + f(0)

+

f(5)

_1578408520.unknown

_1578327411.unknown

_1448006620.vsd
n

f(n-1)

+

f(n-1)

b

c

_1448008835.vsd
...

n

a

a

a

a

a

_1448028261.vsd
+

n

f(n-2)

f(n-1)

n

n-1

_1486979589.unknown

_1448027317.vsd
=

n

n-1

+

n

n-1

n-2

...

1

n-2

...

1

_1448006659.vsd
n

f(n-2)

+

c

a

_1448006494.vsd
n

f(n)

=

